Health estimation of fan based on belief-rule-base expert system in turbofan engine gas-path
نویسندگان
چکیده
منابع مشابه
Online Fault Detection and Isolation Method Based on Belief Rule Base for Industrial Gas Turbines
Real time and accurate fault detection has attracted an increasing attention with a growing demand for higher operational efficiency and safety of industrial gas turbines as complex engineering systems. Current methods based on condition monitoring data have drawbacks in using both expert knowledge and quantitative information for detecting faults. On account of this reason, this paper proposes...
متن کاملAircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering
Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This...
متن کاملGas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer
Abstract: Aircraft engine gas-path health monitoring (GPHM) plays a critical role in engine health management (EHM). Among model-based approaches, the Kalman filter (KF) has been widely employed in GPHM. The main shortcoming of KF-based scheme lies in the lack of robustness against uncertainties. To enhance robustness, this paper describes a new GPHM architecture using a sliding mode observer (...
متن کاملConverting a rule-based expert system into a belief network.
The theory of belief networks offers a relatively new approach for dealing with uncertain information in knowledge-based (expert) systems. In contrast with the heuristic techniques for reasoning with uncertainty employed in many rule-based expert systems, the theory of belief networks is mathematically sound, based on techniques from probability theory. It therefore seems attractive to convert ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mechanical Engineering
سال: 2017
ISSN: 1687-8140,1687-8140
DOI: 10.1177/1687814017694578